\square
Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Mathematics - III

Time: 3 hrs.
Max. Marks: 80
Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

1 a. An alternating current after passing through a rectifier has the form, $I= \begin{cases}I_{0} \sin x & \text { for } 0<x<\pi \\ 0 & \text { for } \pi<x<2 \pi\end{cases}$
where I_{0} is the maximum current and the period is 2π. Express I as a Fourier series.
(08 Marks)
b. Determine the constant term and the first cosine and sine terms of the Fourier series expansion of y from the following data:
(08 Marks)

x	0	45	90	135	180	225	270	315
y	2	1.5	1	0.5	0	0.5	1	1.5

OR
2 a. Obtain the Fourier series expansion of the function, $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ in $(-\pi, \pi)$ and hence deduce that,
$\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .=\frac{\pi^{2}}{8}$
(06 Marks)
b. Find the Fourier series expansion of the function,
$f(x)=\left\{\begin{array}{cl}\pi x & \text { in } 0 \leq x \leq 1 \\ \pi(2-x) & \text { in } 1 \leq x \leq 2\end{array}\right.$.
(05 Marks)
c. The following table gives the variations of periodic current over a period.

t (sec)	0	$\frac{\mathrm{~T}}{6}$	$\frac{\mathrm{~T}}{3}$	$\frac{\mathrm{~T}}{2}$	$\frac{2 \mathrm{~T}}{3}$	$\frac{5 \mathrm{~T}}{6}$	T
A(amplitude)	1.98	1.30	1.05	1.3	-0.88	-0.25	1.98

Show by harmonic analysis that there is a direct current part of 0.75 amp in the variable current and obtain the amplitude of first harmonic.
(05 Marks)

Module-2

3 a. Find the complex Fourier transform of the function $f(x)=\left\{\begin{array}{ll}1 & \text { for }|x| \leq a \\ 0 & \text { for }|x|>a\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$. (06 Marks)
b. Find the Fourier sine transform of $\frac{\mathrm{e}^{-\mathrm{ax}}}{\mathrm{x}}$.
(05 Marks)
c. Compute the inverse z-transforms of $\frac{3 z^{2}+2 z}{(5 z-1)(5 z+2)}$.
(05 Marks)

OR

4 a. Find the z -transform of $\mathrm{e}^{-\mathrm{an}} \mathrm{n}+\sin \mathrm{n} \frac{\pi}{4}$.
(06 Marks)
b. Solve $y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}$ with $y_{0}=y_{1}=0$ using z-transform.
(05 Marks)
c. Find the Fourier cosine transform of, $f(x)= \begin{cases}4 x & 0<x<1 \\ 4-x & 1<x<4 \text {. } \\ 0 & x>4\end{cases}$
(05 Marks)

Module-3

5 a. Find the Correlation coefficient and equations of regression lines for the following data:

x	1	2	3	4	5
y	2	5	3	8	7

(06 Marks)
b. Fit a straight line to the following data:

x	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3

(05 Marks)
c. Find a real root of the equation $\mathrm{xe}^{\mathrm{x}}=\cos \mathrm{x}$ correct to three decimal places that lies between 0.5 and 0.6 using Regula-falsi method.
(05 Marks)

OR

6 a. The following regression equations were obtained from a correlation table.
$y=0.516 x+33.73$
$x=0.516 y+32.52$
Find the value of (i) Correlation coefficient (ii) Mean of x 's (iii) Mean of y 's.
(06 Marks)
b. Fit a second degree parabola to the following data:

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	1.1	1.3	1.6	2.0	2.7	3.4	4.1
(05 Marks)							

c. Use Newton-Raphson's method to find a real root of $x \sin x+\cos x=0$ near $x=\pi$, carry out three iterations.
(05 Marks)

Module-4

7 a. The following data gives the melting point of an alloy of lead and zinc, where t is the temperature in ${ }^{\circ} \mathrm{C}$ and P is the percentage of lead in the alloy:

$\mathrm{P} \%$	60	70	80	90
t	226	250	276	304

Find the melting point of the alloy containing 84% of lead, using Newton's interpolation formula.
(06 Marks)
b. Apply Lagrange's interpolation formula to find a polynomial which passes through the points $(0,-20),(1,-12),(3,-20)$ and $(4,-24)$
(05 Marks)
c. Find the approximate value of $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} d \theta$ by Simpson's $\frac{3^{\text {th }}}{8}$ rule by dividing it into 6 equal parts.

OR

8 a. From the following table :

x°	10	20	30	40	50	60
$\cos \mathrm{x}$	0.9848	0.9397	0.8660	0.7660	0.6428	0.5

Calculate $\cos 25^{\circ}$ using Newton's forward interpolation formula.
(06 Marks)
b. Use Newton's divided difference formula and find $f(6)$ from the following data:

x	$:$	5	7	11	13	17
$f(x)$	$:$	150	392	1452	2366	5202

(05 Marks)
c. Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using Weddle's rule by taking equidistant ordinates.
(05 Marks)

Module-5

9 a. Find the area between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ with the help of Green's theorem in a plane.
(06 Marks)
b. Solve the variational problem $\delta \int_{0}^{1}\left(12 x y+y^{\prime 2}\right) d x=0$ under the conditions $y(0)=3, y(1)=6$.
(05 Marks)
c. Prove that the shortest distance between two points in a plane is along the straight line joining them.
(05 Marks)

OR

a. A cable hangs freely under gravity from the fixed points. Show that the shape of the curve is a catenary.
(06 Marks)
b. Use Stoke's theorem to evaluate for $\vec{F}=\left(x^{2}+y^{2}\right) i-2 x y j$ taken around the rectangle bounded by the lines $x= \pm a, y=0, y=b$.
(05 Marks)
c. Evaluate $\iint_{S}(y z i+z x j+x y k)$ ñds where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant.
(05 Marks)

GEGSEMEME

USN

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Analog Electronics

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing one full question from each module.

Module- 1

1 a. Define h parameters using two port systems.
(05 Marks)
b. Derive expressions for input impedance, output impedance and voltage gain for common emitter fixed bias configuration using re model.
(07 Marks)
c. Find Z_{i}, Z_{o}, A_{v} and A_{i} for the network shown in Fig.Q.1(c). Given data $h_{f b}=-0.99$, $h_{i b}=14.3 \Omega, h_{o b}=0.5 \mu \mathrm{~A} / \mathrm{v}$.
(04 Marks)

OR

2 a. Explain hybrid π model.
(04 Marks)
b. Find r_{e}, Z_{i}, Z_{o} and A_{v} for the circuit shown in Fig.Q.2(b). Given data $B=90, r_{o}=50 \mathrm{k} \Omega$.
(05 Marks)

Fig.Q.2(b)
c. Derive the expressions for Z_{i}, Z_{o}, A_{v} and A_{i} for fixed bias configuration using approximate $\mathrm{C} \varepsilon$ hybrid equivalent model.
(07 Marks)

Module-2

3 a. List the differences between JFET and MOSFET.
(04 Marks)
b. Explain with neat sketches, operation and characteristics of n-channel E-MOSFET.
(08 Marks)
c. Find: i) input impedance ii) output impedance iii) voltage gain for the circuit shown in Fig.Q.3(c). Given data $\mathrm{g}_{\mathrm{m}}=2 \mathrm{~ms}, \mathrm{r}_{\mathrm{d}}=50 \mathrm{~K} \Omega$.
(04 Marks)

Fig.Q.3(c)

OR
4 a. Find transconductance and drain current for the JFET if $\mathrm{I}_{\mathrm{DSS}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{P}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4 \mathrm{~V}$ and $\mathrm{gmo}=4 \mathrm{~ms}$.
(04 Marks)
b. Derive an expressions for Z_{i}, Z_{o} and A_{v} using small signal JFET amplifier under fixed bias configuration.
(07 Marks)
c. Sketch the following circuit diagrams:
i) JFET ac equivalent model of source follower
ii) Cascaded FET amplifier.
(05 Marks)

Module-3

5 a. An amplifier rated at a 40 W output is connected to a 10Ω speaker, Find:
i) Input power required for full output if power gain is 25 dB
ii) Input voltage for rated output if the amplifier voltage gain is 40 dB .
(04 Marks)
b. Explain high frequency response of FET amplifier.
(07 Marks)
c. Explain multistage frequency effects.
(05 Marks)

OR

6 a. Derive an expressions for Miller input and output capacitor
(06 Marks)
b. Determine A_{v}, Z_{i} and $A_{v s}$ for the law frequency response of the BJT amplier circuit shown in Fig.Q.6(b). Assume $r_{0}=\infty$.
(06 Marks)

Fig.Q.6(b)
c. Draw the circuit diagram of high frequency response of BJT amplifier under CE mode with capacitances.
(04 Marks)

Module-4

7 a. List the conditions for sustained oscillations.
(04 Marks)
b. Determine the voltage gain, input impedance and output impedance with feedback for series voltage feedback having $A=-100, R_{i}=10 \mathrm{~K} \Omega$ and $R_{0}=20 \mathrm{~K} \Omega$ for feedback factor $\beta=-0.1$.
(05 Marks)
c. Explain with neat circuit diagram the operation of colpit oscillator.

OR

8 a. Show that gain with feedback in voltage series feedback system reduced by a factor $(1+\mathrm{AB})$.
(05 Marks)
b. Explain the operation of FET RC phase oscillator with neat circuit diagram.
(06 Marks)
c. Design the RC elements of a Wein bridge oscillator for the operation at $\mathrm{f}=10 \mathrm{kHz}$ and draw the oscillator circuit diagram.
(05 Marks)

Module-5

9 a. Define class A, class B, class C and class D power amplifiers.
(04 Marks)
b. Calculate the output voltage and the zener current for the regulator shown in Fig.Q9(b) for $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$.
(04 Marks)

Fig.Q.9(b)
c. Explain with neat diagram and waveforms class B push pull power amplifier.
(08 Marks)

OR
10 a. Compare the series and shunt voltage regulators.
(04 Marks)
b. Define the following:
i) Cross over distortion
ii) Harmonic distortion
iii) Percentage load regulation
iv) Amplifiers efficiency
(04 Marks)
c. Calculate input power, output power and efficiency of the series fed class A power amplifier circuit shown in Fig.Q10(c).
(08 Marks)

Fig.Q.10(c)

USN

15EC33

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019
Digital Electronics
Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIWE full questions, choosing ONE full question from each module.

Module- 1

1 a. Define combinational logic. Design a combinational cirauit which takes two, 2 bit binary numbers as its input and gererates an output equal to 1 , when the sum of the two numbers is even.
(10 Marks)
b. Simplify using Karnaugh map. Write the Boolean equation and realize using NAND gates. $\mathrm{D}=\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathbf{m}(0,2,4,6,8)+\sum \mathrm{d}(10,11,12,13,14,15)$.
(06 Marks)

OR

2 a. Define canonical SOP and canonical POS. Expand $f=(\bar{a}+b+c)(a+c+\bar{d})$ into canonical POS.
(04 Marks)
b. Solve using Quine-McCluskey tabulation method,
$f(a, b, c, d)=\sum m(0,1,4,5,9,10,12,14,15)+\sum \phi(2,8,12$,
Obtain the minimal form of the given function. Verify the result using k-map.
(12 Marks)

Module-2

3 a. Define decoder. Implement full subtractor usinga decodes. Write the truth table. (08 Marks)
b. Compare ripple carry adder and look ahead carry adder. Explain the circuit and operation of a 4 bit binary adder mith look ahead carny.
(08 Marks)

OR

4 a. Design and implement one bit conmparator.
(04 Marks)
b. Implement the multiple functions :
$f_{1}(a, b, c, d)=\Sigma(0,4,8,10,14,15)$ and $\mathrm{f}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma(3,7,9,13)$ using two 3 to 8 decoders, i.e. 74138 ICs.
(06 Marks)
c. Implement full adder aircuit using $8: 1$ nrultiplexer.
(06 Marks)

Module-3

5 a. What is gated SR Latch? Explain the operation of gated SR Latch, with a logic diagram, truth table and logic symbol.
(08 Marks)
b. Derive the characteristic equation of $\mathrm{SR}, \mathrm{JK}, \mathrm{D}$ and T flip-flops with the help of function tables.
(08 Marks)

OR

6 a. Explain the operation of a switch debouncer built using SR Latch. Draw the supporting waveforms.
(04 Marks)
b. Explain 0 s and 1 s catching problem of Master Slave JK flip flop with waveform. Suggest the solution for this problem.
c. What is edge triggered flip flop? With a neat circuit diagram, explain the operation of positive edge triggered D flip flop, using NAND gates.
(08 Marks)

Module-4

7 a. With the help of neat diagram, explain PISO and PIPO operation of unidirectional shift registers.
(08 Marks)
b. Design a 4 bit binary ripple 'UP' counter using negative edge triggered JK flip flop. Show the up counter execution with the help of timing diagram.
(08 Marks)

OR

8 a. Implement a Mod 8 twisted ring counter using D flip flops. Give the counting sequence and decoding gate inputs.
(06 Marks)
b. Design a synchronous MOD-6 counter using JK flip flop for the following count sequence $0,2,3,6,5,1$ and repeat. Write the transition table, logic equations and the counter implementation diagram.
(10 Marks)

Module-5

9 a. Compare Mealy and Moore sequential circuit models with suitable example.
(04 Marks)
b. For the logic diagram shown in Fig.Q9(b), write the state and output equations. Give the transition table and the state diagram.
(12 Marks)

Fig. Q9(b) 9
aR
10 a. Write the basic recommended steps for the design of a clocked synchronous sequential circuit.
(06 Marks)
b. How to convert a Mealy machine to a Moore machine?
(02 Marks)
c. A sequential circuit has one input and one output. The state diagram is shown in Fig.Q10(c). Design a sequential circuit using D flip flop.
(08 Marks)

Fig.Q10(c)

OR

6 a. State and prove the following : i) Initial value theorem ii) Final value theorem. (08 Marks)
b. For the waveform shown in Fig.Q6(b), the equation of the waveforms is $\operatorname{Sin}(t)$ from 0 to π, and $-\sin (t)$ from π to 2π, show that the Laplace transform of this waveform is :
$F(s)=\frac{1}{s^{2}+1} \cot h\left(\frac{\pi S}{2}\right)$.
(08 Marks)

Fig.Q6(b)

Module-4

7 a. Define the following terms :
i) Resonance ii) Bandwidth.
(02 Marks)
b. Prove that $f_{0}=\sqrt{f_{1} f_{2}}$ where f_{1} and f_{2} are the two half power frequencies of a resonant circuits.
(06 Marks)
c. A series RLC circuit has $\mathrm{R}=2 \Omega, \mathrm{~L}=2 \mathrm{mH}$ and $\mathrm{C}=10 \mu \mathrm{f}$ calculate Q -factor, bandwidth, Resonant frequency and half power frequencies f_{1} and f_{2}.
(08 Marks

OR

8 a. Show that a two-branch parallel circuit is resonant at all frequencies if $R_{L}=R_{C}=\sqrt{\frac{L}{C}}$.
(08 Marks)
b. Find the values of L for which the circuit given in Fig.Q8(b) resonates at $w=5000 \mathrm{r} / \mathrm{sec}$.
(08 Marks)

Fig.Q8(b)

Module-5

9 a. Express Z - parameters interms of Y-parameters.
(08 Marks)
b. Obtain $A B C D$ parameters interms of impedance parameters (Z) and hence show that $\mathrm{AD}-\mathrm{BC}=1$.
(08 Marks)

OR

10 a. For the network shown in Fig.Q10(a), contains an voltage controlled source and current controlled source, for the elemental values specified, determine Z and Y parameters. (08 Marks)

Fig.Q10(a)

Fig.Q10(b)
b. Determine transmission parameters for the network shown in Fig.Q10(b).
(08 Marks)

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Electronic Instrumentation

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing
 ONE full question from each module.

Module-1

1 a. Define the following:
i) Accuracy
ii) precision
iii) sensitivity
iv) resolution.
(08 Marks)
b. Calculate the value of shunt resistance if 5 mA meter movement with an internal resistance of 500Ω is to be converted into a $0-500 \mathrm{~mA}$.
(04 Marks)
c. What are the factors to be considered in choosing an analog voltmeter.
(04 Marks)

OR

2 a. For the following given data calculate :
i) Arithmetic mean
ii) Deviation of each value
iii) Average deviation
iv) Standard deviation.
(08 Marks)

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
19.7	20.1	20.2	19.6	19.7

b. Define thermocouple instruments and brief about different types of thermocouples.
(08 Marks)

Module-2

3 a. Explain the operating principle of ramp type DVM with relevant diagrams.
(08 Marks)
b. With a neat block diagram, explain the operation of a basic digital multimeter.

OR

4 a. A $41 / 2$ digit voltmeter is used for voltage measurement :
i) Find its resolution
ii) How would 12.98 V be displaced on a 10 V range
iii) How would 0.6973 V be displaced on 1 V and 10 V range.
(04 Marks)
b. Explain the operation of digital phase meter with a neat sketch.
(08 Marks)
c. Indicate the outstanding qualities/characteristics of a DVM.
(04 Marks)

Module-3

5 a. With a neat block diagram, describe the working of each stage of CRO.
(08 Marks)
b. What are the requirements of a pulse?
(04 Marks)
c. Describe the operation of standard signal generator.
(04 Marks)

OR

6 a. Explain the operation of digital storage oscilloscope with a neat block diagram.
(08 Marks)
b. With a neat block diagram, explain the operation of function generator.

Module-4

7 a. Explain in details the working of Megger. State it applications.
(08 Marks)
b. Explain and derive expression for Maxwell's bridge. If bridge constants are $\mathrm{C}_{1}=0.5 \mu \mathrm{~F}$, $R_{1}=1200 \Omega, R_{2}=700 \Omega, R_{3}=300 \Omega$. Find the resistance and inductance of coil.
(08 Marks)

OR

8 a. Describe the working principle of an output power meter with a neat sketch.
(08 Marks)
b. Find the equivalent parallel resistance and capacitance that causes a Ween's bridge to null with the following values. $\mathrm{R}_{1}=2.7 \mathrm{~K} \Omega, \mathrm{C}_{1}=5 \mu \mathrm{~F}, \mathrm{R}_{2}=22 \mathrm{~K} \Omega, \mathrm{R}_{4}=100 \mathrm{~K} \Omega$ with $\mathrm{f}=2.2 \mathrm{KHz}$.

Fig.Q8(b)

Module-5

9 a. Define Gauge factor and prove that $\mathrm{K}=1+2 \mu$.
b. Explain the operation of semiconductor photo diode and photo transistor.

OR

10 a. List the factors to be considered while selecting a transducer for given application. (04 Marks)
b. A displacement transducer with a shaft stroke of 3.0 inch is applied to the circuit. The total resistance of the pot is $5 \mathrm{~K} \Omega$. The applied voltage V_{t} is 5 V . When the Wipor is 0.9 inch from
B , what is the value of the output voltage?
c. Explain the construction and operation of a LVDT with a neat sketch.
\square
Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Electromagnetics

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. State and explain Coulomb's law.
(04 Marks)
b. A charge $\mathrm{Q}_{\mathrm{A}}=-20 \mu \mathrm{c}$ is located $\mathrm{A}(-6,4,7)_{\mathrm{m}}$ and $\mathrm{Q}_{\mathrm{B}}=50 \mu \mathrm{c}$ at $\mathrm{B}(5,8,-2)_{\mathrm{m}}$ in free space. Find the force exerted on Q_{A} by Q_{B} ?
(05 Marks)
c. Define electric field intensity and electric flux density.
(03 Marks)
d. Calculate the total charge within the volume $0 \leq \rho \leq 0.1, \quad 0 \leq \phi \leq \pi, \quad 2 \leq z \leq 4, \quad \rho_{v}=\rho^{2} z^{2} \sin 0.6 \phi$
(04 Marks)

OR

2 a. Obtain an expression for electric field due to infinite line charge.
(06 Marks)
b. A charge of $-0.3 \mu \mathrm{c}$ is located at $\mathrm{A}(-25,30,15) \mathrm{cm}$ and a second charge of $0.5 \mu \mathrm{c}$ is at $\mathrm{B}(-10,8,12) \mathrm{cm}$. Find E at the origin.
(06 Marks)
c. A uniform line charge of $2 \mu \mathrm{c} / \mathrm{m}$ is located on the z-axis. Find E in rectangular coordinates at $\mathrm{P}(1,2,3)$ if the charge exists from $-\infty<\mathrm{z}<\infty$.
(04 Marks)

Module-2

3 a. State and prove Gauss law and derive first Maxwell's equations from it.
(05 Marks)
b. Given a $60 \mu \mathrm{c}$ point charge located at the origin. Find the total electric flux passing through the closed surface defined by $\rho=26 \mathrm{~cm}$ and $z= \pm 26 \mathrm{~cm}$.
(04 Marks)
c. State and prove the Divergence theorem.
d. Given the electric flux density $D=0,3 r^{2} \hat{a}_{r} \mathrm{nc} / \mathrm{m}^{2}$ in free space. Find E at the point $\mathrm{P}\left(\mathrm{r}=2, \theta=25^{\circ}, \phi=90^{\circ}\right)$.
(02 Marks)

OR

4 a. Prove that the work done in moving a charge in the electric field is

$$
\mathrm{W}=-\mathrm{Q} \int_{\text {initial }}^{\text {final }} \mathrm{E} \cdot \mathrm{dl}
$$

(06 Marks)
b. Calculate the work done in moving a 4 C charge from $\mathrm{B}(1,0,0)$ to $\mathrm{A}(0,2,0)$ along the path $y=2-2 x, \tau=0$ in the field $E=\left(5 x a_{x}+5 y a_{y}\right) V / m$.
(05 Marks)
c. Show that $\nabla \cdot J=-\frac{\partial \rho_{\mathrm{v}}}{\partial \mathrm{t}}$ with usual notations.
(05 Marks)

Module-3

5 a. Starting from Gauss law, derive Poisson's and Laplace's equations.
(04 Marks)
b. Calculate ρ_{v} at point P in free space, if $\mathrm{V}=5 \rho^{2} \cos 2 \phi$ at $\mathrm{P}(3, \pi / 3,2)$
(06 Marks)
c. State uniqueness theorem.
(02 Marks)
d. By using Laplace's equation, derive an expression for the capacitance of a parallel plate capacitor.
(04 Marks)

OR

6 a. State and explain Biot-Savart's law.
(04 Marks)
b. By using Ampere's law, derive an expression for $\overline{\mathrm{H}}$, magnetic field intensity due to a coaxial cable.
(06 Marks)
c. Evaluate both sides of Stokes theorem for the field, $H=\left(6 a y \hat{a}_{x}-3 y^{2} a_{y}\right) A / m$ and the rectangular path around the region $2 \leq x \leq 5,-1 \leq y \leq 1, z=0$. Let the positive direction of ds be a_{2}.
(06 Marks)

Module-4

a. The field $B=\left(-2 a_{x}+3 a_{y}+4 \hat{a}_{z}\right) m T$ is present in free space. Find the vector force exerted on a straight wire carrying a current of 12 A in the a_{AB} direction. Given $\mathrm{A}(1,1,1$, and $B(2,1,1)$.
(04 Marks)
b. Two differential current elements, $I_{1} \Delta L_{1}=3 \times 10^{-6} \mathrm{~A}-\mathrm{m}$ at $P_{1}(1,0,0)$ and $\mathrm{I}_{2} \Delta \mathrm{~L}_{2}=3 \times 10^{-6}\left(-0.5 \hat{\mathrm{a}}_{\mathrm{x}}+0.4 \hat{\mathrm{a}}_{\mathrm{y}}+0.3 \hat{\mathrm{a}}_{z}\right) \mathrm{A}-\mathrm{m}$ at $\mathrm{P}_{2}(2,2,2)$ are located in free space. Find the vector force exerted on $\mathrm{I}_{2} \Delta \mathrm{~L}_{2}$ by $\mathrm{I}_{1} \Delta \mathrm{~L}_{1}$.
(06 Marks)
c. Find the magnetization in a magnetic material where
(i) $\mu=1.8 \times 10^{-5} \mathrm{H} / \mathrm{m}$ and $\mathrm{H}=120 \mathrm{~A} / \mathrm{m}$
(ii) $\mu_{\mathrm{r}}=22$, there are 8.3×10^{22} atoms $/ \mathrm{m}$ and each atom has a dipole moment of $4.5 \times 10^{-27} \mathrm{~A} / \mathrm{m}^{2}$.
(iii) $\mathrm{B}=300 \mu \mathrm{~T} \times \chi_{\mathrm{m}}=15$.
(06 Marks)

OR

8 a. Derive the Magnetic Boundary Condition?
(06 Marks)
b. Let the permittivity is $5 \mu \mathrm{H} / \mathrm{m}$ in the region 1 where $\mathrm{x}<0$ and $20 \mu \mathrm{H} / \mathrm{m}$ in the region 2 where $x>0$, and if $H=\left(300 a_{x}-400 a_{y}+500 \hat{a}_{z}\right) \mathrm{A} / \mathrm{m}$ and if there is a surface current density $\mathrm{K}=\left(150 \hat{a}_{y}-200 \hat{a}_{z}\right) A / m$ at $x=0$.
Find (i) $\left|\mathrm{H}_{\mathrm{t}}\right|$
(ii) $\left|\mathrm{H}_{\mathrm{N}_{1}}\right|$
(iii) $\left|\mathrm{H}_{\mathrm{t}_{2}}\right|$
(ii) $\left|\mathrm{H}_{\mathrm{N}_{2}}\right|$
(06 Marks)
c. Derive the expression for the energy density in a magnetic field?
(04 Marks)

Module-5

9 a. State Faraday's laws of electromagnetic induction. Further derive Maxwell's equation from it.
(04 Marks)
b. Find the amplitude of the displacement current density due to an automobile antenna where the magnetic field intensity of an FM signal is $\mathrm{H}_{\mathrm{x}}=0.15 \cos \left[3.12\left(3 \times 10^{8} \mathrm{t}-\mathrm{y}\right)\right] \mathrm{A} / \mathrm{m}$.
(06 Marks)
c. State Maxwell's equation in both Point form and in Integral form.
(06 Marks)

OR

10 a. Derive the wave equation in one dimension for an EM wave travelling in free space
(06 Marks)
b. The electric field amplitude of the uniform plane wave in the a_{z} direction is $250 \mathrm{~V} / \mathrm{m}$. If $\mathrm{E}=\mathrm{E}_{\mathrm{x}} \mathrm{a}_{\mathrm{x}}$ and $\omega=1.00 \mathrm{Mrad} / \mathrm{s}$, find (i) the frequency (ii) the wavelength (iii) the period (iv) the amplitude of H .
c. State and prove Poynting's theorem.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Additional Mathematics - I

Time: 3 hrs.
Max. Marks: 80
Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the modulus and amplitude of $\frac{(3-\sqrt{2} i)^{2}}{1+2 i}$.
(06 Marks)
b. Find the cube root of $(1-i)$.
(05 Marks)
c. Prove that $\left(\frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta}\right)^{n}=\cos \left(n \frac{\pi}{2}-n \theta\right)+i \sin \left(n \frac{\pi}{2}-n \theta\right)$.
(05 Marks)

2 a. For any three vector $\mathrm{a}, \mathrm{b}, \mathrm{c}$ show that

$$
[\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{~b}}+\overrightarrow{\mathrm{c}}, \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{a}}]=2[\overrightarrow{\mathrm{a} b} \overrightarrow{\mathrm{~b}}]
$$

(06 Marks)
b. Find the value of λ so that vectors $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{c}=\hat{j}+\lambda \hat{k}$ are coplanar.
c. Find the angle between the vectors $\vec{a}=5 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$

Module-2

3 a. Find the $n^{\text {th }}$ derivative of $\cos x \cos 2 x \cos 3 x$.
(06 Marks)
b. If $y=a \cos (\log x)+b \sin (\log x)$, prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0 .(05$ Marks)
c. Find the angle between the radius vector and tangents for the curve $r^{2} \cos 2 \theta=a^{2} \quad$ (05 Marks)

OR

4 a. If $u=e^{a x+b y}+(a x-b y)$ prove that $b \frac{\partial u}{\partial x}+a \frac{\partial u}{\partial y}=2 a b u$.
(06 Marks)
b. If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x-y}\right)$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$.
(05 Marks)
c. If $x=u(1-v), y=u v$. Find $\frac{\partial(x, y)}{\partial(u, v)}$.
(05 Marks)

Module-3

5 a. Obtain the reduction formula for $\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x \quad(n>0) . \quad$ (06 Marks)
b. Evaluate $\int_{0}^{1} x^{6} \sqrt{1-x^{2}} d x$.
(05 Marks)
c. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{y} x y z d x d y d z$.
(05 Marks)

OR

6 a. Obtain the reduction formula for $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x, n>0$.
(06 Marks)
b. Evaluate $\int_{0}^{a} x^{2}\left(a^{2}-x^{2}\right)^{\frac{3}{2}} d x$.
(05 Marks)
c. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{x}} x y d y d x$.
(05 Marks)

Module-4

7 a. A particle moves along a curve $x=e^{-t}, y=2 \cos 3 t, z=2 \sin 3 t$ where t is the time. Determine the component of velocity and acceleration vector at $t=0$ in the direction of $\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$.
(08 Marks)
b. Find the value of the constant a, b, such that $\vec{F}=\left(a x y+z^{3}\right) \hat{i}+\left(3 x^{2}-z\right) \hat{j}+\left(b x z^{2}-y\right) \hat{k}$ is irrotational.
(08 Marks)

OR

8 a. If $\vec{F}=(x+y+1) \hat{i}+\hat{j}-(x+y) \hat{k}$ show that $\vec{F} \cdot$ curl $\vec{F}=0$.
(06 Marks)
b. If $\phi(x, y, z)=x^{3}+y^{3}+z^{3}-3 x y z$ find $\nabla \phi$ at $(1,-1,2)$.
(05 Marks)
c. Find the directional derivative $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$.
(05 Marks)

Module-5

9
a. Solve $\frac{d y}{d x}=\frac{y}{x-\sqrt{x y}}$.
b. Solve $y e^{x y} d x+\left(x e^{x y}+2 y\right) d y=0$
c. $\frac{d y}{d x}-\frac{2 y}{x}=x+x^{2}$.
(06 Marks)
(05 Marks)
(05 Marks)

OR

10 a. Solve $\frac{d y}{d x}=\frac{y}{x}+\sin \left(\frac{y}{x}\right)$.
(06 Marks)
b. Solve $\left(y^{3}-3 x^{2} y\right) d x-\left(x^{3}-3 x y z\right) d y=0$
(05 Marks)
c. Solve $\left(1+y^{2}\right) d x+\left(x-\tan ^{-1} y\right) d y=0$
(05 Marks)

